Activation of soluble splenic cell guanylate cyclase by prostaglandin endoperoxides and fatty acid hydroperoxides.
نویسندگان
چکیده
Purified prostaglandin endoperoxides (PGG2 and PGH2) and hydroperoxides (15-OOH-PGE2) as well as fatty acid hydroperoxides (12-OOH-20:4, 15-00H-20:4, and 13-OOH-18:2) were examined as effectors of soluble splenic cell guanylate cyclase activity. The procedures described (in the miniprint supplement) for the preparation, purification, and characterization of these components circumvented the use of diethyl ether which obscured effects of lipid effectors because of contaminants presumed to be ether peroxides which were stimulatory to the cyclase. Addition of prostaglandin endoperoxides or fatty acid hydroperoxides to the reaction mixture led to a time-dependent activation of guanylate cyclase activity; 2.5- to 5-fold stimulation was seen during the first 6 min. The degree of stimulation and rate of activation were dependent on the concentration of the fatty acid effector; when initial velocities (6 min) were assessed half-maximal stimulation was achieved in the range of 2 to 3 micrometer. However, by extending the incubation time to 90 min similar maximal increases in specific activity could be achieved with 3 or 10 micrometer PGG2 or PGH2. Activation of guanylate cyclase upon addition of prostaglandin endoperoxides or fatty acid hydroperoxides was prevented or reversed by the thiol reductants dithiothreitol (3 to 5 mM) or glutathione (10 to 15 mM). Na2S2O4, not known as an effective reducing agent of disulfides, prevented but was relatively ineffective in reversing activation after it had been induced by PGG2. Pretreatment of the enzyme preparation with increasing concentrations of N-ethylmaleimide in the range of 0.01 to 1.0 mM prevented activation by PGG2 without affecting basal guanylate cyclase activity. These observations indicate that fatty acid hydroperoxides and prostaglandin endoperoxides promote activation of the cyclase by oxidation of enzyme-related thiol functions. In contrast PGE2, PGF2a, hydroxy fatty acids (13-OH-18:2, 12-OH-20:4) as well as saturated (18:0) monoenoic (18:1), dienoic (18:2), and tetraenoic (20:4) fatty acids were ineffective in promoting cyclase activation in the range of 1 to 10 micrometer. Studies to identify the species of the rapidly metabolized prostaglandin endoperoxides that serve as effectors of the cyclase indicated that PGG2 but not 15-OOH-PGE2 (the major buffer-rearrangement product of PGG2) is most likely an activator. In the case of PGH2, a rapidly generated (30 s) metabolite of PGH2 was found which contained a hydroperoxy or endoperoxy functional group and was equally as effective as PGH2 as an apparent activator of the enzyme. The combined effects of PGG2 and dehydroascorbic acid, another class of activator, exhibited additivity with respect to the rate at which the time-dependent activation was induced. These results suggest that activation of soluble guanylate cyclase from splenic cells can be achieved by the oxidation of sulfhydryl groups that may be associated with specific hydrophobic sites of the enzyme or a related regulatory component.
منابع مشابه
Stimulation of human platelet guanylate cyclase by fatty acids.
Guanylate cyclase from human platelets was over 90% soluble, even when assayed in the presence of Triton X-100. A time-dependent increase in activity occurred when the enzyme was incubated at 37 degrees and this spontaneous activation was prevented by dithiothreitol. Arachidonic acid stimulated the soluble enzyme activity approximately 2- to 3-fold. Linear double reciprocal plots of guanylate c...
متن کاملAmyloid-β Inhibits No-cGMP Signaling in a CD36- and CD47-Dependent Manner
Amyloid-β interacts with two cell surface receptors, CD36 and CD47, through which the matricellular protein thrombospondin-1 inhibits soluble guanylate cyclase activation. Here we examine whether amyloid-β shares this inhibitory activity. Amyloid-β inhibited both drug and nitric oxide-mediated activation of soluble guanylate cyclase in several cell types. Known cGMP-dependent functional respons...
متن کاملOxidative-reductive modulation of guinea pig splenic cell guanylate cyclase activity.
The modulation of cyclic GMP metabolism by oxidativereductive-related processes was studied in intact guinea pig splenic cells and with respect to the activities of soluble and particulate guanylate cyclase. In intact cells the oxidant dehydroascorbic acid produced timeand concentration-dependent increases in cGMP steady state levels which were potentiated by the phosphodiesterase inhibitor 3-i...
متن کاملActivation of guanylate cyclase in cerebral cortex of rat by hydroxylamine.
Hydroxylamine actived guanylate cyclase in particulate fraction of cerebral cortex of rat. Activation was most remarkable in crude mitochondrial fraction. When the crude mitochondrial fraction was subjected to osmotic shock and fractionated, guanylate cyclase activity recovered in the subfractions as assayed with hydroxylamine was only one-third of the starting material. Recombination of the so...
متن کاملCarnosine as a regulator of soluble guanylate cyclase.
The molecular mechanism of the participation of carnosine in the functioning of soluble guanylate cyclase is discussed. It is shown that carnosine inhibits the activation of soluble guanylate cyclase by sodium nitroprusside and a derivative of furoxan--1,2,5-oxadiazolo-trioxide (an NO donor). However, carnosine has no effect on stimulation of the enzyme by a structural analog of the latter comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 253 21 شماره
صفحات -
تاریخ انتشار 1978